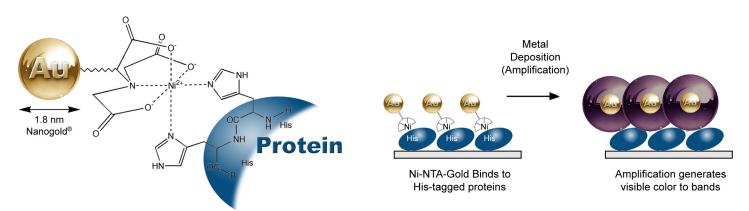

GoldiBlotTM His Western Blot Kit

95 Horseblock Road, Unit 1, Yaphank NY 11980-9710
Tel: (877) 447-6266 (Toll-Free in US) or (631) 205-9490 Fax: (631) 205-9493
Tech Support: (631) 205-9492 tech@nanoprobes.com
www.nanoprobes.com

PRODUCT INFORMATION

Product Name: GoldiBlot™ His Western Blot Kit


Catalog Number: 2090-10BLOTS **Revision**: 1.6 (February 2024)

INTENDED USE

GoldiBlotTM His Western Blot Kit is intended and optimized for direct visualization of recombinant His-tagged proteins and other proteins bearing different polyhistidine (His) tags in western or dot blotting applications. Unlike detection by some anti-6xHis antibodies, GoldiBlotTM His detection does not require a specific location of the polyhistidine tag (*N*- or *C*-terminus) or the presence of specific adjacent amino acid sequences, and can recognize internal His-tags in addition to those at the *N*- or *C*-terminus. Probing is complete in one step, without the need for primary and secondary antibody incubations.

PRINCIPLE OF GOLDIBLOTTM HIS WESTERN BLOT KIT

GoldiBlotTM His Western Blot Kit uses Ni-NTA (nickel-nitrilotriacetic acid)-functionalized gold nanoparticles to specifically bind to His-tagged proteins¹⁻⁶. When autometallographic amplification is subsequently applied to the gold nanoparticles, GoldiBlotTM allows the direct visualization of His-tagged proteins. GoldiBlotTM generates specific purple-colored metallic bands or dots which do not fade and will not dissolve in water and organic solvents. The GoldiBlotTM His Western Blot Kit can detect nanogram levels of purified His-tagged proteins. The entire procedure takes about 1 hour.

(left) Ni-NTA-Gold, showing mechanism of binding to a polyhistidine (His) – tagged protein. (right) Principle of GoldiBlotTM: gold binding followed by autometalographic amplification (deposition of metal selectively onto the gold particles) generates visible signal.

Rev. 1.6 (02/24)

Rev. 1.6 (02/24) Page 2

REAGENTS PROVIDED

#2090-10BLOTS kit contains the following materials:

GoldiBlot™ Nickel-NTA-Au	1 mL
GoldiBlot TM AutoMet Detect A	27 mL
GoldiBlot [™] AutoMet Detect B	27 mL
GoldiBlot [™] AutoMet Detect C	27 mL
GoldiBlot TM AutoMet Detect D	27 mL

MATERIALS REQUIRED, BUT NOT SUPPLIED

TBS-0.1%T: 20 mM Tris, 0.15 M NaCl, pH7.6, 0.1% (w/v) Tween®-20

5 % (w/v) nonfat dry milk in TBS-0.1%T

TBS-0.6%T: 20 mM Tris, 0.15 M NaCl, pH7.6, 0.6% (w/v) Tween®-20

1 % (w/v) nonfat dry milk in TBS-0.6%T

10 mM imidazole in TBS-0.6%T

STORAGE

Refrigerate upon receipt. The product is shipped at ambient temperature.

PROCEDURE FOR DETECTION OF POLYHISTIDINE-TAGGED PROTEINS

Note: Volumes indicated below are for one 7 x 8.4 cm blot. Volumes may be adjusted for different sized or multiple blots.

All GoldiBlotTM reagents and other required materials should be equilibrated to room temperature prior to using for the western blotting procedure. All incubations of the GoldiblotTM western blotting are performed at room temperature with shaking.

- 1. Transfer proteins from gel to a PVDF or nitrocellulose membrane.
- 2. Place the membrane in a tray and equilibrate with TBS-0.1%T for 3 min.
- 3. Block the membrane with 5 % (w/v) nonfat dry milk in TBS-0.1%T for 15 min.
- 4. Add 0.1 ml of GoldiBlot™ Nickel-NTA-Nanogold® to 10 mL of 1 % (w/v) nonfat dry milk in TBS-0.6%T. Vortex. Place the membrane in the solution, and incubate the blot for 30 min.
- 5. Wash the membrane two times with 15 mL of 10 mM imidazole in TBS-0.6%T for 2 min each.
- 6. Wash the membrane three times with 15 mL of deionized water for 3 min each.
- 7. Before starting the last deionized water wash, mix 2.5 ml GoldiBlot™ AutoMet Detect A with 2.5 mL B in a clean 15 mL container. After 5 min, add 2.5 mL C and 2.5 mL D to the mixture of A and B, and mix. Incubate the blot with 10 ml of the ABCD mixture for 6 to 15 min, or until satisfactory staining is reached.
 - **Note**: The incubation time of GoldiBlot™ AutoMet Detect ABCD depends on the quantities of His-tagged proteins loaded. Bands loaded with more than 100 ng His-tagged protein may be seen within 6 minutes. Longer incubation times may be needed in order to see less than 20 ng His-tagged protein. However, longer incubation may lead to some non-specific background binding.
- 8. Wash the membrane three times for three minutes each time with 15 mL of deionized water to terminate autometallographic amplification.
 - Note: Any light background color of the membrane back fades as the membrane dries out.
- 9. Air-dry the membrane.

Note: The concentration of NaCl and Tween 20 in binding and washes (used in GoldiBlot™ Nickel-NTA-Nanogold® binding and imidazole washes) can be slightly adjusted to achieve an optimized signal-to-noise ratio. Less NaCl and Tween®-20 can enhance the band intensity of His-tagged proteins, and higher NaCl and Tween 20 help reduce the non specific background staining.

Rev. 1.6 (02/24)

REFERENCES

1. Hochuli, E.; Dobeli, H., and Schacher, A.: New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. *J. Chromatograph.*, **411**, 177-184 (1987). PMID: <u>3443622</u>. DOI: <u>10.1016/s0021-9673(00)93969-4</u>.

- 2. Schmitt, J.; Hess, H., and Stunnenberg, H. G.: Affinity purification of histidine-tagged proteins. *Molecular Biology Reports*, **18**, 223-230 (1993). PMID: <u>8114690</u>. DOI: <u>10.1007/BF01674434</u>.
- 3. Hainfeld, J. F.; Liu, W.; Halsey, C. M. R.; Freimuth, P., and Powell, R. D.: Ni-NTA-Gold clusters target His-tagged proteins. *J. Struct. Biol.*, **127**, 185-198 (1999). PMID: <u>10527908</u>. DOI: <u>10.1006/jsbi.1999.4149</u>.
- 4. Collins, R. F.; Beis, K.; Clarke, B. R.; Ford, R. C.; Hulley, M.; Naismith, J. H.; and Whitfield, C.: Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J. Biol. Chem., 281, 2144-2150 (2006). PMID: 16172129. PMCID: PMID: 16172129. PMCID: PMID: 16172129.
- 5. Wolfe, C. L.; Warrington, J. A.; Treadwell, L., and Norcum, M. T.: A three-dimensional working model of the multienzyme complex of aminoacyl-tRNA synthetases based on electron microscopic placements of tRNA and proteins. J. Biol. Chem., 280, 38870-38878 (2005). PMID: 16169847. DOI: 10.1074/jbc.M502759200.
- 6. Bumba, L.; Tichy, M.; Dobakova, M.; Komenda, J., and Vacha, F.: Localization of the PsbH subunit in photosystem II from the Synechocystis 6803 using the His-tagged NiNTA Nanogold labeling. J. Struct. Biol., 152, 28-35 (2005). PMID: 16181791. DOI: 10.1016/j.jsb.2005.08.001.